Mars' paleomagnetic field as the result of a single-hemisphere dynamo.
نویسندگان
چکیده
Mars' crustal magnetic field was most likely generated by dynamo action in the planet's early history. Unexplained characteristics of the field include its strength, concentration in the southern hemisphere, and lack of correlation with any surface features except for the hemispheric crustal dichotomy. We used numerical dynamo modeling to demonstrate that the mechanisms proposed to explain crustal dichotomy formation can result in a single-hemisphere dynamo. This dynamo produces strong magnetic fields in only the southern hemisphere. This magnetic field morphology can explain why Mars' crustal magnetic field intensities are substantially stronger in the southern hemisphere without relying on any postdynamo mechanisms.
منابع مشابه
Weaker axially dipolar time-averaged paleomagnetic field based on multidomain-corrected paleointensities from Galapagos lavas.
The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dy...
متن کاملPaleointensity of the ancient Martian magnetic field
[1] Mars today has no core dynamo magnetic field. However, the discovery of remanent magnetization in Martian meteorites and intense crustal magnetization suggests that Mars once had a global field. Here we present high resolution maps of the magnetic field of Martian meteorite ALH 84001. These maps are the most sensitive yet quantitative study of natural remanent magnetization (with resolved a...
متن کاملThe Case Against an Early Lunar Dynamo Powered by Core Convection
Paleomagnetic analyses of lunar samples indicate that the Moon had a dynamo-generated magnetic field with ~50 μT surface field intensities between 3.85 and 3.56 Ga followed by a period of much lower (≤ ~5 μT) intensities that persisted beyond 2.5 Ga. However, we determine herein that there is insufficient energy associated with core convection—the process commonly recognized to generate long-li...
متن کاملMagnetism of a very young lunar glass
Recent paleomagnetic studies of Apollo samples have established that a core dynamo existed on the Moon from at least 4.2 to 3.56 billion years (Ga). Because there is no lunar dynamo today, a longstanding mystery has been the origin of magnetization in very young lunar samples (<~200million years old (Ma)). Possible sources of this magnetization include transient fields generated bymeteoroid imp...
متن کاملBracketing the End of the Martian Dynamo: the Ages and Magnetic Signatures of Hellas and Ladon Basins
The Ladon basin is the only basin on Mars which shows the clear effects of impact demagnetization (like the giant basins Hellas, Argyre, Utopia and Isidis) but which also contains a significant central magnetic anomaly, as determined by electron reflection (ER) magnetometry. This suggests thermoremanent magnetization of the cooling central melt pool in the presence of a dynamo-driven magnetic f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 321 5897 شماره
صفحات -
تاریخ انتشار 2008